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According to hydrodynamical and mode-coupling theories, the angular 
velocity autocorrelation function decays at long times as vo(t]lO-14 see)-5tL 
For rough spheres under the conditions reported here, the quantity v0 is 
predicted to be 262. The molecular dynamics studies presented here yield a 
long-time tail of the form 230(t/10-14 sec)-2.38. The disagreement between 
theory and computer results probably arises from statistical error intrinsic 
to the computations. 
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Molecular  dynamics  studies by Alder  and  Wainwright  (1~ on systems of 

identical hard spheres and  hard disks and  by Levesque arid Ashurs t  (2~ on a 
fluid of  soft, repulsive particles have shown that  the velocity autocorre la t ion 

funct ion  decays as ao t -  a/2 at long times, where ao is a coefficient dependent  

on the density p and  d is the dimensional i ty  of the system. The long-t ime 

behavior  has been explained by kinetic theory (3~ for small densities and  by 

various hydrodynamic  models (4~ for fluid systems at all densities. Extension 

of these theoretical at tempts to systems with internal  degrees of freedom by 

means  of hydrodynamic  models (5) and  microscopic mode-coupl ing calcula- 

t ions (~ have led to predictions of a long-t ime decay of the angular  velocity 
autocorre la t ion funct ion (AVCF)  in three dimensions  as 

f ( t )  = (to(O).to(t))/(to(O) 2) ,,, vo(t/lO -1~ sec) -sj2 (1) 
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We have computed, using the molecular dynamics technique, the AVCF 
for a test rough sphere in a fluid of rough spheres. The system simulated was 
one in which a test particle of diameter ar = 6 A and mass M = 8m was 
taken in a bath of 94 particles of mass m and diameter ab = 2 A, contained 
in a cubic box of side 10.756 A. Periodic boundary conditions were used. 
The Percus-Yevick parameter ~ = (~r/6)(nb~b 8 + nrara), where nb and nr are 
the number densities of the bath and test particle s, respectively, had a value 
equal to 0.4105. 

In an earlier molecular dynamical study C7) on the above system, we 
considered the behavior of the autocorrelation functions of velocity and 
angular velocity of  the test sphere during the initial time period as well as 
during the transition between the initial time and asymptotic times. The 
AVCF is obtained at time t = kh, where k is an integer and h = 1 x 10 -1~ 
sec, by the time average, 

f ( k h )  = ~ = 1  tor[lhl ' tor[(t  - k)h] 
2r=1 to~(/h).,o~(th) (2) 

where mr(t) is the angular velocity of the test particle at time t. Here ph  is 
the total time for which the system is followed. 

Figure 1 (inset) shows a plot o f f ( t )  on a log-log scale. It is seen that 
after a time corresponding to roughly 23tc, where tc is the mean collision 
time of the test particle, the decay of the autocorrelation function follows 
a power law with slope -2 .38 ,  i.e., at long times 

f ( t )  ,,~ vo(t/h) -z'a8 

The coefficient of the decay Vo is found to be 230. The single error bar marked 
at t = 25h is an estimate of  the standard error (S.E.) assuming that the 
dynamical process is a Gaussian random process. With this assumption, the 
square of the standard error is given by r the expression 

) 2 J 
a2[f(r)] = m S_ I = 1 m -- I [f2(Jh) + f ( j h  + lh ) f ( j h  - lh)] 

1 
m - t If=(0) + f=(th)] (3) 

where r --- lh. In the general case knowledge of  the correlation function alone 
is not sufficient for error estimation and it is necessary to have available 
moments of  higher order. For  long times az[f(r)] is fairly independent of r 
(as found by calculation) and hence the value marked by the error bar is the 
same over the time range 25h to 35h. This is consistent with that found by 
Alder et aL ~9~ in molecular dynamical calculations and with that predicted 
by Zwanzig and Ailawadi, c1~ who showed that at long times 

S.E. N (~-/T)Z12 (4) 
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Fig. 1. Normalized autocorrelation function of angular velocity for a test particle. The 
inset i s  a log-log plot of the autocorrelation function at long times compared with 
hydrodynamic theory (dashed line). 

A Gaussian random process was assumed and ~- is the characteristic decay 
time if the autocorrelation function is assumed to decay exponentially. The 
S.E. calculated from (3) agrees with that calculated from (4) if the slope of 
the initial exponential decay is taken as r -1  (Fig. 1). 

The S.E. is 277o of  the value of  the autocorrelation function at the 
beginning of  the t -5 i2  decay at t = 22h and is 50% of the value of t = 32h, 
where the scatter in the function appears. For  the error to be reduced to 107o 
it is seen f rom Eq. (4) that the time period for which the system has to be run 
would be increased by a factor of  nine. Considering that the computation 
time on a CDC Cyber 74 system to obtain the present data was around 7 h, 
it was not economically feasible to reduce the error to a more acceptable 
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value. The fact that the data points form a smooth curve arises from the 
overlapping intervals used in the time average (2). For any scatter to be 
detected, the individual data points would have to be separated by a time 
interval of more than a correlation time z. It must be emphasized that the 
error estimate is based on a Gaussian process assumption and may be too 
conservative. 

The advantage gained by choosing a large test particle is that the mean 
collision time tc is reduced by a factor of  4.4 compared to that of a bath 
particle. The test particle can be followed for many more collision times than 
a bath particle for a given system size, before the interference effects due to 
the periodic boundaries are felt. 

We now Show that, although the system size is small, the asymptotic 
behavior o f f ( t )  has been observed for times such that the boundary condi- 
tions have no influence on the AVCF. The time t has to be smaller than some 
characteristic time t ~ l/c, where l is the length of the cubic box containing 
the system and c is the sound velocity, 

1 
c = D ( e d c , , ) k ~ ] ~  (5) 

O is the density of the system, and cv and cp are the specific heats at constant 
volume and pressure, respectively. Since nr << nb, the isothermal compres- 
sibility kr can be estimated from scaled particle theory, (11) assuming the 
fluid to be a single-component system with Percus-Yevick parameter ~: 

kr  = ~raa (1 - ~)~ 
W ~kT(1 + 2r 2 (6) 

The ratio of specific heats cdG, for a rough sphere fluid is 

c 2 _- 1 (7) 
c~ 1 + (pV/3NkT)pkT 

The quantity p V/NkT is obtained from the equation of state of the system. 
Substitution of (6) and (7) into (5) yields for the sound velocity c = 2.29 x 
105 cm/sec and the characteristic time to = I/c = 4.7 x 10 -18 sec. From 
Fig. 1 (inset) it is seen that for the data points falling in a straight edge, the 
time is below to. The scatter obtained after t = 32h is therefore due to the 
interference of the boundary. 

The coefficient of the decay Vo in Eq. (1) obtained in the computer 
experiment is compared with that predicted by theory when the coupling 
between the translational and rotational degrees of freedom is weak (for the 
rough sphere fluid the cross-correlation functions between angular and linear 
velocities are exactly zero). This coefficient (5'6) is equal to 

v~ h"ory = (~I/o)[4,rrh(v* + D*)] -5t2 (8) 
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where I (=- ~aMar  2) is the moment  of inertia of  the test particle, p is the mass 
fluid density, v* is the kinematic shear viscosity, and D* is the diffusivity. 
The values of v* and D* are estimated for the system as described in the 
appendix of Ref. 7. I f  v* is calculated using the Stokes-Einstein relation 
between v* and D*, then v~ he~ = 262. I f  v* is estimated from the Enskog 
value for a dense fluid mixture, we obtain vg he~ = 201. Considering the 
uncertainty involved in the slope of the asymptotic decay and the approxima- 
tion used in estimating the value of the viscosity, there is seen to be fair 
agreement between theory and computer experiment. 

Figure 1 compares the theoretical decay curve vghe~ -5/2 with the 
computer results. I t  is seen that the theoretical result for the asymptotic 
value of the autocorrelation function lies within a standard deviation of the 
computer  result at t = 25h. 

Although there is roughly only one layer of  bath particles around the 
test particle in,the box, the hydrodynamic effect is not affected by the periodic 
boundaries. For  the time period of 10tc to 20to in which we observe inter- 
mediate-time behavior we have given evidence and reasons why the periodic 
boundaries do not interfere in an earlier work, (12~ where a hard-sphere system 
was considered in the same sized box, and excellent agreement was obtained 
with the hydrodynamic model for an infinite system. This justifies taking the 
viscosity of  the bath as that for the infinite system. 

The number dependence correction usually used for the velocity correla- 
tion function is of  the order of 1IN. This correction arises out of  the total 
linear momentum conservation of a finite system of particles. However, for 
the rough sphere model, the intrinsic angular momentum is not conserved 
and the form of the correction for the angular velocity autocorrelation 
function, if any, is not clear. 

We did not include the asymptotic behavior of  the velocity auto- 
correlation function in this report  because at times equal to 20to the autocor- 
relation function decays to values comparable with the standard error. 

REFERENCES 

1. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett. 18"988 (1967); J. Phys. Soc. Japan 
SuppL 26:267 (1968); Phys. Rev. A 1:18 (1970). 

2. D. Levesque and W. T. Ashurst, Phys. Rev. Lett. 33:277 (1974). 
3. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. A 6:776 (1972). 
4. Y. Pomeau, Phys. Rev. A 5:2569 (1972); R. Zwanzig and M. Bixon, Phys. Rev. A 

2:2005 (1970); M. H. Ernst, E. H. Hauge, and J. M. J. Van Leeuwen, Phys. Rev. 
A 4:2055 (1971). 

5. N. K. Ailawadi and B. J. Berne, J. Chem. Phys. 54:3569 (1971); N. K. Ailawadi 
and S. Harris, J. Chem. Phys. 56:5783 (1972); B. J. Berne, J. Chem. Phys. 56:2164 
(1972); T. S. Chow, Phys. Fluids 16:31 (1973); E. H. Hauge and A. Martin-Lof, 
J. Star. Phys. 7:259 (1973). 



6 G. Subramanian, D. G. Levitt, and H. T. Davis 

6. F. Garisto and R. Kapral, Phys. Rev. A 10:309 (1974). 
7. G. Subramanian and H. Ted Davis, Phys. Rev. A 11:1430 (1975). 
8. A. A. Sveshnikov, Applied Methods of  the Theory of  Random Functions, Pergamon 

(1966). 
9. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970). 

10. R. Zwanzig and N. K. Ailawadi, Statistical Error due to Finite Time Averaging in 
Computer Experiments, Technical Note BN-592, University of Maryland Institute 
for Fluid Dynamics and Applied Mathematics. 

11. H. Reiss, in Advances in Chemical Physics, Vol. IX, Interscience, London (1965), 
pp. 1-85. 

12. G. Subramanian, D. G. Levitt, and H. Ted Davis, J. Chem. Phys. 60:591 (1974). 


